ReadSpeaker:
ListenLarger documents may require additional load time.
Cognitive Development Beyond Infancy
The Cambridge Encyclopedia of Child Development. Ed. Brian Hopkins. Cambridge, UK: Cambridge University Press, 2005. p204-209.
Copyright: COPYRIGHT 2005 Cambridge University Press
Full Text: 
Page 204

Cognitive Development Beyond Infancy

TARA C. CALLAGHAN

Introduction

Since 1970s, research on the origins of human knowledge about the physical and social world has fueled a revolution in ideas of when and how humans begin to represent, reason, and accumulate a base of knowledge about objects, people, and the self. Current views construe cognitive development as a complex process that is grounded both in biological preparedness, and in the highly evolved cultural context that surrounds and nurtures the child from infancy and beyond. Along with revolutionary findings have come major shifts in theories of cognitive development, notions of continuity and discontinuity in that development, and the topics that engage researchers. To provide an overview of this vast research area, we focus on the theoretical filters that have dominated research, the major findings in key research areas, and research directions for the future.

Theories and filters: past and present

For many years, the theoretical foundations of cognitive development came mainly from Jean Piaget's unparalleled works. Almost as soon as the works of Piaget were translated into English, his biologically influenced, organismic view of the construction of intelligence across successive, qualitatively distinct chronological stages became the target of harsh criticisms from behaviorists, who viewed the child as essentially a passive, blank slate upon which experience etched the individual. In contrast to this view, Piaget believed the developing child was a biologically prepared organism engaged in the active construction of physical knowledge through a precise succession of necessary stages, culminating in the emergence of formal logical thought by early adulthood. Although Piaget's ideas revolutionized the study of cognitive development, some justly argue that his model neglected the important role of socialization. Nevertheless, the theory continues to evolve in the writings of neo-Piagetians and others using a dynamical systems approach to account for qualitative change over development.

Another perspective comes from the writings of Lev Vygotsky. He offered the novel view that thought develops first and foremost in social interaction, only later becoming internalized via language and inner speech. For Vygotsky, the child's cognition develops in a social context with a strong supporting cast. The parents, siblings, peers, and educators of the child play a critical role in shaping the context in ways that support development. Thus, it is during the social engagement of children in their social settings that cognition develops.

Both Piaget and Vygotsky left a legacy of ideas that define the way many contemporary researchers view cognitive development. These include the view that infants and children are actively involved in constructing their knowledge, that the foundations for cognitive development lie in both biological preparedness and social supports, and that development is a lengthy process of refinement. From these historical theoretical foundations, a number of contemporary theories of cognitive development have emerged that help to frame current research findings.

Innate, modularity theories

Mental modules are specialized to process domain-specific input (e.g., language) with encapsulated processing mechanisms, and are considered to be hard wired in the organism's biological makeup with outputs that are resistant to modification from experience. A number of developmental researchers with nativist leanings have softened the original modular claim in order to account for changes over development. For example, rather than a single encapsulated module for theory of mind reasoning, it has been suggested that a sequence of mental modules come on line over development. In another model, a process called representational re-description is proposed as a mechanism that allows the organism to change implicit, modularized information into explicit knowledge that

Page 205  |  Top of Article

can then be modified through theory building, thought experiments, and the like.

Still other researchers supporting the modular account distinguish between core concepts (e.g., solidity and contact), which develop early and are resistant to change, and non-core concepts (e.g., gravity) that develop later and are influenced by real world experience with physical objects and gravity. However, this view is challenged by researchers who propose that the development of physical knowledge of objects is influenced by the maturation of motor abilities such that infants come to interact with the world and derive very different information as a function of whether they can reach, grasp, and manipulate those objects. In spite of these modifications, the ‘softer’ modular theorists retain a distinctly nativist flavor, and aim to identify initial states and constraints on cognitive development.

Domain-specific expertise models

In contrast to the strongly nativist claims of modular theorists, other researchers propose that islands of competence are carved out by high levels of practice in specific domains. It is clear that gaining specific information about a domain through the effects of practice can improve knowledge acquisition in those domains. However, what is difficult to reconcile with a purely practice account of knowledge development is the fact that children are not always explicitly exposed to the information that forms the basis of their knowledge and beliefs. Thus, while expertise does influence the nature of the knowledge base in particular domains, it is clear from research in this field that biological preparedness also plays a role in predicting developmental outcome.

Hybrid theories

Many contemporary theorists see a role for both biology and social support in cognitive development. The relative influence of biology and culture on development is perhaps most strongly debated in accounting for language acquisition, wherein some researchers take a distinctly nativist, modular view of the process (Pinker, 1994), while others argue that social influences play a critical role along with the speech perception and learning mechanisms present at birth (Tomasello, 2003). Similar arguments are found in theories of children's developing theories of mind. Some researchers claim that infants begin life with an initial theory of the world that is based on action (much as Piaget claimed), and an initial understanding of self that is founded on an imitation mechanism present at birth. Then, during infancy and through childhood, social cognitive understanding (e.g., of intentionality and the self/other distinction) is developed through imitating others (i.e., their bodily actions, actions on objects, and intentions), and then revised and reconstituted much like the process of theory building.

Theoretical accounts of cognitive development have been heavily influenced by infancy research, and most attempt to account for the clear foundational role that early years of development play in later cognitive refinement. The origins of humans' abilities to represent, reason, and build knowledge about physical and social worlds clearly lie in infancy (Rochat, 2001). The refinement of these representations, reasoning abilities, and knowledge bases is the work of childhood.

Continuity/discontinuity and the special case of symbols

While many researchers have criticized Piaget's view that cognitive development encompasses a sequential unfolding of multiple, qualitatively distinct ways of knowing and forms of knowledge, it is clear that qualitative distinctions do exist. One such discontinuity in cognitive development is the onset of an ability to use representations as the currency of communicative exchange — the onset of the symbolic mind. Symbols are representations intended to refer to entities outside of themselves, and their use is specific to the human species and universal across cultures. They are also cultural artifacts, or ways that cultures have evolved to ensure a meeting of minds in communicative exchanges. The questions of when symbolic understanding emerges, what precursors are necessary for its development, and whether it is driven by a domain-general or domain-specific process are hotly debated.

We know that infants are patently pre-symbolic organisms. We also know that symbolic proficiency in language emerges toward the end of infancy, first in gestures and then in verbal language, but that profound refinements of this ability continue throughout life as children increase their fluency and come to understand the more subtle uses of language such as metaphor and irony. The trend of increasing refinement in symbolic functioning also occurs for other symbols, such as play, maps, and pictures. Some research suggests that language develops first, followed closely by symbolic play, and visual symbolism. Additionally, language appears to help children break into other symbolic systems, and children's symbolic development appears to be supported by social facilitation from other people who are more advanced symbol users. Although research in this field has been dominated by language, it is likely that the priority cultures give to particular symbol systems will influence the trajectory of their development. In American-European culture, the priority is clearly verbal language as parents engage

Page 206  |  Top of Article Fig. 1


Figure 1. A six-level model of symbolic development

Figure 1. A six-level model of symbolic development — adapted from P. Rochat and T. C. Callaghan, (in press). What drives symbolic development? The case of pictorial comprehension and production. In L. Narry, ed., The Development of Symbolic Comprehension and Use. Mahwah, NJ: Erlbaum, suggesting that perceptual, learning, cognitive, and social mechanisms support development. It is claimed that the onset and refinement of symbolic functioning is influenced by the combination of many social cognitive foundations laid down during infancy (e.g., intentional understanding, learning through modeling, forming analogies and categories), the social support of expert symbol users, and the child's own drive to affiliate with the symbolic cultural group.

infants in proto-conversations from birth, and this priority may account for the relatively early development of linguistic as compared to other symbols.

The ability to use symbols is a paradigm shift for the human organism, and affects cognition of all types once it is achieved. Studies of symbolic development provide a fertile ground for discussion of the domain-specificity issue. Some researchers suggest that the onset of symbolic systems has a distinctly modular flavor, supporting the domain-specific view. In contrast, others (Rochat & Callaghan, in press) argue that the domain-general mechanisms found in infancy — notably the appreciation of similarity and analogical reasoning, understanding of intentions, propensity to reproduce the actions of others, and basic social affiliative needs — pave the way for the development of the insight that symbols serve as representations of entities outside of themselves (see Fig. 1 for more details on this model of

Page 207  |  Top of Article

symbolic development). To understand better whether symbolic development is domain-general or specific, more research needs to be devoted to the study of this development both across symbolic systems and across cultures.

Selected contemporary topics

Foundational knowledge

Foundational knowledge refers to fundamental insights that change the way we view the world, such as the concept that objects continue to exist even when we no longer see them. In the domain of physical knowledge, children between the ages of 3 and 10 years appear to judge objects on the basis of what kind of thing it is and generalize their knowledge to similar kinds of things. Children at this age also appear to have a naïve theory of matter as they judge that irrelevant changes of size and weight do not have an impact on enduring physical properties like material. In the domain of psychological understanding, commonly called theory of mind, it is clear that by 3 to 4 years children turn to desires, emotions, and perceptions as the explanatory constructs for people's actions. By 5 years, children come to understand the role of beliefs in predicting and explaining action. Specifically, at this age children have the critical insight that another person could hold a belief that is false, that is different from their own, and that will result in a particular action.

Further refinement of psychological understanding is found in 6- to 10-year-olds who begin to make correct judgments of actions based on the more subtle distinctions of mixed, hidden, and social (pride, shame, and guilt) emotions. In the domain of biological knowledge, there is evidence that preschool children have core knowledge of a very basic distinction between animate/inanimate entities and know, for example, that animals breathe, eat, have similar body parts, and so on. However, there is equally compelling evidence to suggest they have persistent misconceptions surrounding animacy that undergo radical re-organization during childhood.

Memory

The study of memory in childhood has recently focused on a variety of themes including strategies, domain knowledge, and eyewitness testimony to name a few. Children do not appear to utilize memory strategies spontaneously for improving recall prior to early elementary school age, but can be easily trained to use them even in the preschool years. A number of studies have shown that increasing amounts of knowledge within a domain improves accuracy and influences how information is organized in memory. For example,

Fig. 2


Figure 2. Mother and toddler in market in Thailand.

Figure 2. Mother and toddler in market in Thailand.

children who were chess experts sometimes reached the same level of performance as adult experts, and were better than adult novices at recalling meaningful chess arrangements. In eyewitness testimony research, preschoolers are usually found to be accurate, especially for personally meaningful information, but they recall less information than older children. Preschoolers are also more suggestible than older children, and a number of researchers have identified specific characteristics of questions that lead these youngsters astray, helping forensic psychologists to improve interview techniques for child witnesses.

Reasoning

Reasoning can be based on a variety of relationships between kinds, including perceptual and conceptual similarities, analogies, and rules. Children are clearly influenced in their reasoning by perceptual similarity, but so too are adults. As they get older and gain knowledge about the concepts and categories in their world, their reasoning will focus more on features that define category membership (e.g., has wings made of feathers) than on simple perceptual features (e.g., is yellow). Children of 3 to 6 years can reason analogically about causal relations as long as they are familiar with the relationship (e.g., cutting results in more pieces), and even adults have difficulty reasoning about more complex causal relations such as the dynamics of objects.

Page 208  |  Top of Article Fig. 3


Figure 3. Preschoolers in Peru.

Figure 3. Preschoolers in Peru.

Young preschoolers are fairly rigid rule followers, and once they learn a rule they have difficulty changing it. They can also induce relatively abstract rules, such as ‘pick the one that's different’ across diverse problems. What is clear from research in this field is that while the content of knowledge may become more complex over development, even very young children are remarkably adept at using the same learning, memory, and reasoning tools that serve adults well.

Future directions for research: situating a biological organism in a cultural context

In contemporary cognitive development research, a marriage of perspectives is emerging that focuses on the initial states of knowledge and processes, as well as on the contexts in which these subsequently develop.

Social and cultural influences on cognitive development

Recently, a number of researchers have shown that a variety of social factors, those that are core to the learning occurring in close social interactions, are fundamental to cognitive development. For example, symbolic functioning has been found to improve as a result of certain parenting practices, the verbal and pre-verbal communication styles of parents, and adult modeling. A few researchers have gone outside of the dominant American-European context to examine the role of cultural factors, and found both universal trends as well as diversity in cognitive developmental outcome. More studies of social influences are needed, especially those that compare across diverse cultures, to help us understand what is universal in early development and how open subsequent development is to influence from cultural forces. Researchers need to clarify the extent to which diversity in early experience, such as in the Thai preschooler who spends her days with her mother in her market stall, or the Peruvian preschoolers who learn to march with their teacher (see Figs. 2 and 3 ), leads to diversity in developmental outcome.

Cultural and sociocultural conceptualizations of development

A rather new paradigm shift is taking hold whereby cognitive development is construed as a process of

Page 209  |  Top of Article

co-construction between children and their cultural context (Rogoff, 2003). For example, in a growing body of research, evidence is found that even early in life a concept of self is developed through participation in a given cultural system of meanings and practices that can be distinctive, and hence may effect diverse developmental outcomes. Many researchers in this area have focused on distinctive notions of self that emerge in cultures that encourage collaboration and interdependence between people as compared to those that foster individual achievement and independence. However, there is no simple principle of developmental outcome given cultural context; diversity can develop within as well as between broadly defined cultural groups.

Conclusions

A general theme that emerges from this review is that cognitive development beyond infancy appears to be based on both biological pre-dispositions and sociocultural experiences. Fundamental questions have been raised that need to be addressed in future research. What are the initial states of knowledge in humans? To what degree are these initial states modifiable by experience? Is there continuity in the processes underlying cognitive development? Are domains of knowledge and the symbol systems used to manipulate that knowledge sharply bounded in encapsulated modules? Or are the boundaries between domains and symbol systems more permeable? Specifically, can expertise in one domain influence development in another?

Infancy research will continue to address these fundamental questions by identifying the importance of prenatal development and the initial state of the human organism before postnatal experience in the physical and social world. Child research that looks for universal milestones of cognitive development across diverse cultures, especially in the early years, can also help to answer these questions. When a study of universality is coupled with a search for the diversity of outcomes that are afforded by cultural influences, it can potentially lead to a deeper understanding of human cognitive development.

Further reading

W. Damon (series ed.), and D. Kuhn and R. S. Siegler (vol. eds.) (1999). Handbook of Child Psychology, 5th edn. Vol. II: Cognition, Perception and Language. New York: Wiley.

Goswami, U. (ed.) (2003). Blackwell Handbook of Childhood Cognitive Development. Malden, MA: Blackwell.

Tomasello, M. (1999). The Cultural Origins of Human Cognition. Cambridge, MA: Harvard University Press.

Source Citation   (MLA 8th Edition) 
Callaghan, Tara C. "Cognitive Development Beyond Infancy." The Cambridge Encyclopedia of Child Development, edited by Brian Hopkins, Cambridge University Press, 2005, pp. 204-209. Gale Virtual Reference Library, http%3A%2F%2Flink.galegroup.com%2Fapps%2Fdoc%2FCX1311100053%2FGVRL%3Fu%3Dcuny_hunter%26sid%3DGVRL%26xid%3D8a47d276. Accessed 19 Nov. 2018.

Gale Document Number: GALE|CX1311100053

View other articles linked to these index terms:

Page locators that refer to this article are not hyper-linked.