Harvey, William (1578–1657)

Citation metadata

Author: GUIDO GIGLIONI
Editor: Jonathan Dewald
Date: 2004
Europe, 1450 to 1789: Encyclopedia of the Early Modern World
Publisher: Charles Scribner's Sons
Document Type: Biography
Pages: 3
Content Level: (Level 5)
Lexile Measure: 1330L

Document controls

Main content

About this Person
Born: April 01, 1578 in Folkestone, United Kingdom
Died: June 03, 1657 in London, United Kingdom
Nationality: English
Occupation: Anatomist
Full Text: 
Page 139

HARVEY, WILLIAM (1578–1657)

HARVEY, WILLIAM (1578–1657), English physician and anatomist. William Harvey was born at Folkestone, on the south coast of England. He matriculated at Gonville and Caius College, Cambridge, in 1593 and studied anatomy in Padua under Girolamo Fabrizi d'Aquapendente. Harvey received his degree as doctor of medicine in 1602. Returning to England, he settled in London, where he started a medical practice. In 1607 he became a fellow of the College of Physicians and was formally appointed physician to St. Bartholomew's Hospital in 1609. In 1613 he was elected censor in the College and in 1615 Lumleian Lecturer of Surgery with the principal duties of giving a series of lectures on set texts and performing an annual public anatomy in the hall of the College. Some of the anatomical lecture notes survive and have been edited by the College of Physicians (1886); by C. D. O'Malley, F. N. L. Poynter, and K. F. Russell (1961); and by G. Whitteridge (1964).

In 1618 Harvey was appointed court physician to James I and later to Charles I (1625), and as a member of the royal entourage, he was involved in a number of political and diplomatic activities. In 1629 he attended the duke of Lennox in his travels abroad on the orders of Charles I. On several occasions (in 1633, 1639, 1640, and 1641) he was asked to accompany the king to Scotland. In 1635 he traveled with the earl of Arundel on a diplomatic mission to the Emperor Ferdinand II's court at Regensburg. After the Battle of Edgehill (1642), Harvey followed Charles I to Oxford. He remained there for three years and was made warden of Merton College in 1643. During the Civil War, his lodgings at Whitehall were plundered by Parliamentary troops, and he lost all his notes on the generation of insects and natural history. In 1646, when the city surrendered to Parliament, Harvey returned to London, where he lived in learned retirement. He died in 1657, at the age of seventy-nine.

THEORIES OF CIRCULATION

In the Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (Anatomical study on the motion of the heart and blood in animals), published in Frankfurt in 1628, Harvey announced his epoch-making discovery of the circulation of the blood. According to the old view, as it had been systematized by Galen in the second century C.E., blood originated in the liver from the assimilation and transformation of food and then ebbed and flowed through the veins in order to nourish the various parts of the body. A part of the venous blood was thought to seep through the interventricular septum of the heart (considered to be porous) and, upon arrival in the left ventricle, was supposed to undergo further elaboration as a result of being mixed with air coming from the lungs. Galen believed that the veins and the arteries were separate systems that carried fluids of different natures: thick, nutritive blood in the former, and spirituous, energizing blood in the latter. By means of a series of close arguments and experimental proofs, Harvey demonstrated that the blood was continuously and rapidly transmitted from the veins to the arteries, was driven into every part of the body in a far greater quantity than was needed for nourishment, and was finally drawn from the periphery to the heart to start the same cycle again.

A long and complex genealogy of anatomical findings and physiological speculations underlies Harvey's discovery. Realdo Colombo (1516?–1559?) discovered pulmonary circulation, but failed to put it in the wider context of systemic circulation; Andrea Cesalpino (1519–1603) caught a glimpse of the capillaries, but by circulation he meant a series of distillations occurring in the blood; Girolamo Fabrizi (1537–1619) detected the venous valves but did not understand their role in the centripetal venous flow. Unlike his predecessors, who reached only partial conclusions and remained entangled in the theoretical constraints of older accounts, Harvey managed to find an elegant and consistent solution for a whole series of interrelated problems: the correct interpretation of the systole and diastole of the heart (the former viewed as an active contraction, the latter as a passive distension), the clear demonstration of the pulmonary transit of the blood (from the right to the left ventricle by way of the pulmonary artery, the lungs, and the pulmonary vein), the understanding of the actual role of the venous valves (which serve to prevent the blood driven into the veins from being regurgitated back Page 140  |  Top of Article into the arteries). The experimental demonstration of circulation rested on the correct understanding of two key insights: the uses of ligatures of varying tightness and the calculation of the rate of blood passing through the heart at each beat.

THEORETICAL ELABORATIONS, ANATOMY, AND SPIRIT

In Exercitationes Anatomicae Duae de Circulatione Sanguinis (1649; Two anatomical exercitations on the circulation of the blood), written in response to some objections put forward by Jean Riolan, he distanced himself from René Descartes's explanation of the heartbeat. In addition, Harvey took the opportunity to define his idea of spirit as an inherent and material component of blood. In so doing, he rejected Jean Fernel's belief in the existence of transcendent and immaterial spirits governing the vital functions of the body.

The theory presented in De Motu Cordis and De Circulatione offered an alternative and revolutionary account of the anatomy and physiology of the human body. By disentangling the function of respiration from the motion of the heart and arteries and by separating the purpose of the circulation from the processes of concoction and nutrition, Harvey initiated a process of conceptual and factual reorganization in which the respiratory, digestive, and nervous apparatuses began to assume the characteristic features that they still have today. Inevitably, though, Harvey's model was also confronted with a crucial objection: why had the blood to circulate rapidly and incessantly throughout the body if nourishment of the parts was not one of the functions of that circulation and if no exchange of vital properties contained in the inhaled air took place in the lungs? The ultimate purpose of circulation and the difference between arterial and venous blood remained two unsolved points in Harvey's system.

In Exercitationes de Generatione Animalium (1651; Anatomical exercitations concerning the generation of living creatures), Harvey addressed the question of the generation of oviparous and viviparous animals. In embryology he advanced the theory that the parts of higher animals were successively formed out of the undifferentiated matter of the egg (a process he called "epigenesis"). Harvey's main concern in the treatise was the explanation of the origin and mechanism of conception. Unable to observe the initial stages of pregnancy in dissected hinds and does, he failed to understand the part played by the male's semen in fecundating the female. He argued that the process of fertilization could be compared to a transmission of vital energy at a distance.

In De Generatione Harvey also argued in favor of the preeminence of the blood, as an inherently animate matter, over the other parts of the body. His theory of epigenesis demonstrated the original nature of the blood. Its intrinsically spirituous substance confirmed the existence of a vital matter endowed with the ability to move, perceive, and respond to external stimuli. Harvey went so far as to identify the soul with the blood. His interest in the responsive nature of living matter dated back to the beginnings of his natural investigations. An unfinished treatise entitled "De Motu Locali Animalium" (On the local motion of the animals) testifies to his interest in studying the difference between voluntary and involuntary motions and the interplay of muscles, nerves, and the organs involved in locomotion and sensation.

The first to accept the circulatory model was Harvey's friend and colleague at the College of Physicians, Robert Fludd (1574–1637), who looked at the discovery of circulation as a confirmation of his speculations on the correspondence of microcosm and macrocosm. René Descartes (1596–1650) accepted Harvey's discovery of the circulation of the blood but disagreed with his explanation of the movement of the heart. Whereas Harvey maintained that the movement was the result of a vital contraction, Descartes explained it as a mechanical impulse determined by the ebullition and consequent rarefaction of the blood. Thomas Willis (1621–1675) and Richard Lower (1631–1691) refined and supplemented Harvey's circulatory model. Both mechanical anatomists like Marcello Malpighi (1628–1694) and chemical physiologists like Franciscus de la Boë (called Sylvius; 1614–1672) made Harvey's discovery an integral part of their physiological schemes. Francis Glisson (1597–1677) took the Harveian thesis of the inherently active and sentient natureoftheblood asthestartingpointforacomprehensive theory of irritability.

BIBLIOGRAPHY

Primary Sources

Harvey, William. The Circulation of the Blood and Other Writings. Translated by K. J. Franklin. London, 1990.

——. The Works of William Harvey. Translated by R. Willis. London, 1847.

Secondary Sources

Bono, James. "Reform and the Languages of Renaissance Theoretical Medicine: Harvey versus Fernel." Journal of the History of Biology 23 (1990): 341–387.

Frank, Robert G. Harvey and the Oxford Physiologists: A Study of Scientific Ideas. Berkeley, 1980.

French, Roger. William Harvey's Natural Philosophy. Cambridge, U.K., 1994.

Keynes, Geoffrey. The Life of William Harvey. Oxford, 1966.

Lawrence, T. Gulielmi Harveii Opera Omnia: A Collegio Medicorum Londinensi Edita. London, 1766.

Pagel, Walter. New Light on William Harvey. Basel, 1976.

——. William Harvey's Biological Ideas. Basel, 1967.

GUIDO GIGLIONI

Source Citation

Source Citation   

Gale Document Number: GALE|CX3404900498